Earth is already shooting through the 1.5°C global warming limit, two major studies show

Earth is already shooting through the 1.5°C global warming limit, two major studies show

The studies were conducted independently by researchers in Europe and Canada. They tackled the same basic question: is a year above 1.5°C global warming a warning sign that we’re already crossing the Paris Agreement threshold?

Both studies used observations and climate model simulations to address this question, with slightly different approaches.

In the European paper, the researchers looked at historical warming trends. They found when Earth’s average temperature reached a certain threshold, the following 20-year period also reached that threshold.

This pattern suggests that, given Earth reached 1.5°C warming last year, we may have entered a 20-year warming period when average temperatures will also reach 1.5°C.

The Canadian paper involved month-to-month data. June last year was the 12th consecutive month of temperatures above the 1.5°C warming level. The researcher found 12 consecutive months above a climate threshold indicates the threshold will be reached over the long term.

Both studies also demonstrate that even if stringent emissions reduction begins now, Earth is still likely to be crossing the 1.5°C threshold.

For decades, climate scientists have warned that burning fossil fuels for energy releases carbon dioxide and other gases that are warming the planet.

But humanity’s greenhouse gas emissions have continued to increase. Since the Intergovernmental Panel on Climate Change released its first report in 1990, the world’s annual carbon dioxide emissions have risen about 50%.

Put simply, we are not even moving in the right direction, let alone at the required pace.

If Earth has indeed already crossed the 1.5°C mark, and humanity wants to get below the threshold again, we will need to cool the planet by reaching “net-negative emissions”—removing more greenhouse gases from the atmosphere than we emit. This would be a highly challenging task.